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• Regularization for Deep Learning
• Regularization in General
• Data Preprocessing
• Dataset Augmentation
• Early Stopping and Dropout

• Modern Architectures
• Major Application of AI
• AlexNet
• YOLO
• RNN

• Exercise
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Regularization for Deep Learning
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Regularization in General
Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
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Regularization of a mismatch
• Data generation: almost never have access to the 

true data generation process

• Model representation: not sure if our model family 
covers the data generation or not

• More memorization capacity naturally tends to overfit
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Data Preprocessing

Mean subtraction
• Subtracting the mean across every individual 

feature in the data
Normalization
• Normalizing the data dimensions so that they are 

of approximately the same scale. 
• One is to divide each dimension by its standard 

deviation, once it has been zero-centered. 
• Another is to normalize each dimension so that the 

min and max along the dimension is -1 and 1 
respectively. 

PCA and Whitening 
• In this process, the data is first centered as 

described above. 
• Then, we can compute the covariance matrix that 

tells us about the correlation structure in the data

How to preprocess image data?
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Norm Penalties as Constrained Optimization

• Weight Regularization
• L1 regularization: 𝑅 𝑊 = ∑!∑" 𝑊!,"

• L2 regularization: 𝑅 𝑊 = ∑!∑"𝑊!,"
$

Weight Regularization
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Data loss
Model predictions should 

match training data

Regularization
Prevent the model from doing 
too well on training data

+ as strength of 
Regularization
(hyperparameter)

Elastic Net (L1+L2)
• 𝑅 𝑊 = ∑!∑" 𝛽𝑊!,"

$ + 𝑊!,"
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Dataset Augmentation

• We are always limited by the amount of data available for generalization
• Why Images?
• high dimensional 
• include an enormous variety of factors, many of which can be easily simulated

Create fake data and add it to the training set, particularly effective for object recognition
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https://blog.keras.io/building-
powerful-image-classification-
models-using-very-little-
data.html
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Dataset Augmentation
Create fake data and add it to the training set, particularly effective for object recognition
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Horizontal Shift

Vertical Shift Flip with H/V Shift

Random Zoom (Noise)

Brightness Shift (Noise)Rotation Shift

https://machinelearningmastery.com/how-to-configure-image-data-
augmentation-when-training-deep-learning-neural-networks/
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Early Stopping

• We can obtain a model with better 
validation set error (and thus, hopefully 
better test set error) 

• Every time the error on the validation set 
improves, we store a copy of the model 
parameters

• As a very efficient hyperparameter 
selection algorithm
• The number of training steps is just another 

hyperparameter

Due to its simplicity and effectiveness, it is probably the most commonly used form of regularization in deep learning
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Learning curves showing how 
the negative log-likelihood loss changes over time 

(epochs: the number of training iterations over the dataset)

the training objective decreases consistently
over time, but the validation set average loss 
eventually begins to increase again
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Dropout

• The dropout rate
• The fraction of the features that are zeroed out; 
• Usually set between 0.2 and 0.5.

• Dropout improves the performance of neural 
networks on supervised learning tasks significantly

Randomly drop units (along with their connections) from the neural network during training
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http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Modern Architectures
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Major Application of AI
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Source

https://ravirajabhat.github.io/what-is-artificial-intelligence/
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Image Recognition
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Source: codebasics

https://www.youtube.com/watch?v=taC5pMCm70U
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AlexNet - Architecture
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AlexNet - Application
Finetune AlexNet
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• Downloaded the train.zip file from 
• the Kaggle Dogs vs. Cats Redux Competition.
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Some Notes
• Why still Alexnet now?
• Simple yet works quite well on many of the projects in our lab: classify rotation angles, 

recognize good grasp position, recognize certain patterns to trigger robot actions
• No reason to switch to any of the more heavy-weight models.
• Outperforms more complex model like VGG and Inception when the training data 

is small in size.
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YOLO
Real-Time Object Detection
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YOLO

• You only look once (YOLO) is an object 
detection system targeted for real-time 
processing. 

• Evolvement
• YOLO: 2015, ““ You Only Look Once: Unified, Real-Time 

Object Detection ”,”
• YOLOv2: 2017, “YOLO9000: Better, Faster, Stronger”
• YOLOv3: 2018, “YOLOv3: An Incremental Improvement”
• YOLOv4: 2020, “YOLOv4: Optimal Speed and Accuracy 

of Object Detection”

History
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https://arxiv.org/abs/1506.02640
https://arxiv.org/pdf/1612.08242v1.pdf
http://arxiv.org/abs/1804.02767v1
https://arxiv.org/abs/2004.10934


AncoraSIR.com

Architecture of pipeline

• YOLO is a fully convolutional network (FCN) only convolutional layers.
1. A feature extracting network: darknet-53
• 3 ! 3 and 1! 1 filters with skip connections
• final feature map has 1/32 times smaller 

2. Upsampling network
• 1/32, 1/16, 1/8 of the input image

3. YOLO layers
• Makes detections at three different scales.
• capable of capturing large/smaller objects

YOLOv3
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More Details on Architecture
• Backbone Network : darknet53
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• Upsampling network and YOLO layers
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Architecture

• YOLOv3 makes detections at three different scales
• The detection is done by applying 1 x 1 detection kernels on feature maps of 

three different sizes

Interpreting the Output
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416x416 1/32: 13x13 Number of channel 
B x (5 + C) 
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Source

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
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Choice of anchor boxes
• YOLO v3 uses 3 anchor boxes for each scale.
• With COCO 80 classes, Number of channel = B x (5 + C) = 3 x (5+80) 
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Summary
• YOLOv3 detects objects of different sizes at three YOLO layers.

• Each YOLO layer has grids of different resolution and three anchors with 
different shapes.

• Each anchor of one grid has the following information: box center location, 
box size, objectness likelihood, and class probability.

• YOLO is fast because it does not depend on regional proposal and run the 
neural network forward once on an image.
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Resource

• YOLO v3 and v4 in C++:  https://github.com/AlexeyAB/darknet
• YOLO is supported in Nvidia DeepStream:

https://news.developer.nvidia.com/deepstream-sdk-4-now-available/
• YOLO v7 in Python and Pytorch: https://github.com/WongKinYiu/yolov7
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Application: Real-time Redaction
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source

https://devblogs.nvidia.com/real-time-redaction-app-nvidia-deepstream-part-2-deployment/
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Major Application of AI
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Source

https://ravirajabhat.github.io/what-is-artificial-intelligence/
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Recurrent Neural Networks
Why Recurrent Neural Networks?
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• RNN were created because there were a few issues in the feed-forward neural 
network:
• Cannot handle sequential data
• Considers only the current input
• Cannot memorize previous inputs
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What Is a Recurrent Neural Network (RNN)?
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Source

• RNN are distinguished by their “memory” as they take information from prior 
inputs to influence the current input and output.

• RNN share parameters across each layer of the network

https://www.ibm.com/cloud/learn/recurrent-neural-networks
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Types of Recurrent Neural Network?
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One-to-one: One-to-many: Many-to-one:

Many-to-many: Many-to-many:

https://www.ibm.com/cloud/learn/recurrent-neural-networks
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Variant RNN architectures
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• Long Short-Term Memory Networks
• LSTMs are a special kind of RNN — capable of learning long-term dependencies 

by remembering information for long periods is the default behavior.

Source

https://zh.d2l.ai/chapter_recurrent-modern/lstm.html
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Variant RNN architectures
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• Long Short-Term Memory Networks
• LSTMs are a special kind of RNN — capable of learning long-term dependencies 

by remembering information for long periods is the default behavior.
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Generative Adversarial Networks
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• GANs can be trained on the images of 
• humans to generate realistic faces.
• cartoon characters for generating faces of anime characters as well as Pokemon characters.



AncoraSIR.com

Text to Image
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What are Generative Adversarial Networks?
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• Generative Adversarial Networks (GANs) were introduced in 2014 by Ian J. Goodfellow
• GANs perform unsupervised learning tasks in machine learning.
• It consists of 2 models that automatically discover and learn the patterns in input data.

• A Generator in GANs is a 
neural network that creates 
fake data to be trained on the 
discriminator. It learns to 
generate plausible data.

• The Discriminator is a neural 
network that identifies real 
data from the fake data 
created by the Generator. The 
discriminator's training data 
comes from different two 
sources
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Steps for Training GAN
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1. Define the problem
2. Choose the architecture of GAN
3. Train discriminator on real data
4. Generate fake inputs for the generator
5. Train discriminator on fake data
6. Train generator with the output of the discriminator
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Exercise with Julia
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• CNN: Handwritten digits classification

• RNN: AI Generates Shakespeare-like 
text

• Deep Convolutional GANs (DCGANs): 
Generate images from noise
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Homework

• Start assembly your team’s portion of Reachy and identify parts that could be 
redesigned with generative design.
• "#$%&'()*+),-.

• On Tue Nov 15, each team will give a presentation of 6 mins + Q&A 4 mins 
1. /01234)5678)94:;78<=>?@A@BCDAEF1GH
2IJ/KLM

2. NOP0QR0@A@BST/UV?Reachy<2EF1/1:DAWC
• !"#$%&'()'(*+,
• -.#$%/0-.(12-.,
• 34#$%5678(9:(;<=,
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