DES 5002: Designing Robots for Social Good

Autumn 2022

Week 9 | Lecture 10 Modern Architectures

Wan Fang

Southern University of Science and Technology

Today's Agenda

• Regularization for Deep Learning

- Regularization in General
- Data Preprocessing
- Dataset Augmentation
- Early Stopping and Dropout

Modern Architectures

- Major Application of AI
- AlexNet
- YOLO
- RNN
- Exercise

Regularization for Deep Learning

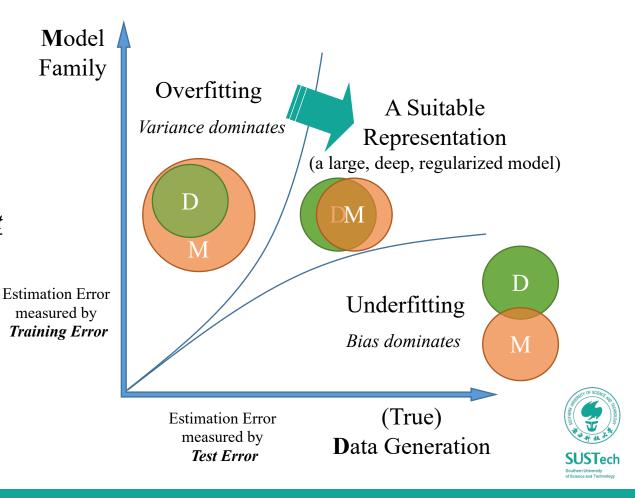
DES5002 Designing Robots for Social Good

Regularization in General

Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error

Regularization of a mismatch

- **Data generation**: almost never have access to the true data generation process
- **Model representation**: not sure if our model family covers the data generation or not
- More memorization capacity naturally tends to *overfit*
 - Limited memorization capacity won't be able to learn the mapping, causing *underfitting*
- The best fitting model is a large model that has been *regularized appropriately*



Data Preprocessing

How to preprocess image data?

Mean subtraction

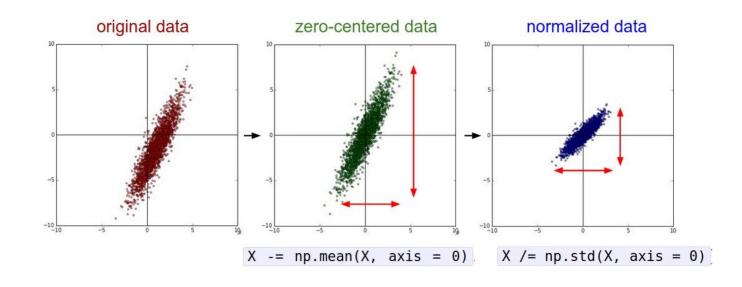
• Subtracting the mean across every individual feature in the data

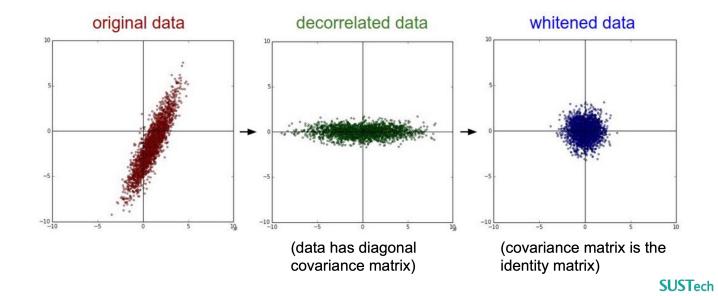
Normalization

- Normalizing the data dimensions so that they are of approximately the same scale.
 - One is to divide each dimension by its standard deviation, once it has been zero-centered.
 - Another is to normalize each dimension so that the min and max along the dimension is -1 and 1 respectively.

PCA and Whitening

- In this process, the data is first centered as described above.
- Then, we can compute the covariance matrix that tells us about the correlation structure in the data

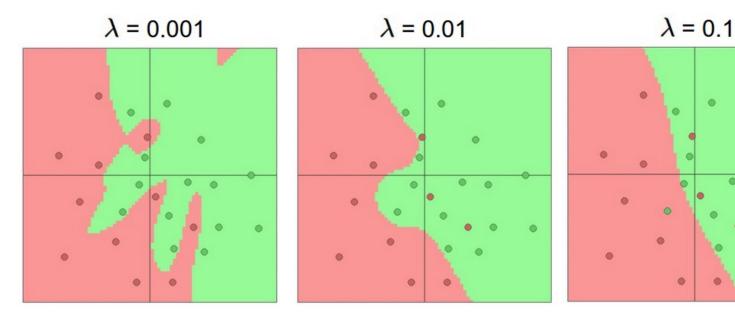




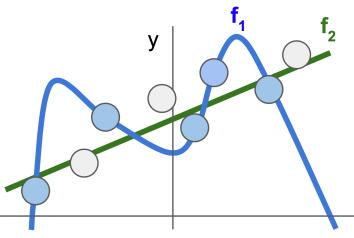
Norm Penalties as Constrained Optimization

Weight Regularization

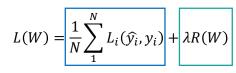
- Weight Regularization
 - L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$
 - L2 regularization: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$



AncoraSIR.com



Regularization pushes against fitting the data *too* well so we don't fit noise in the data



 λ as strength of Regularization (*hyperparameter*)

Data loss Model predictions should match training data

Elastic Net (L1+L2)

 $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^{2} + |W_{k,l}|$

Х

•

Regularization

Prevent the model from doing too well on training data

SUSTech Southern University of Science and Technology

DES5002 Designing Robots for Social Good

Dataset Augmentation

Create fake data and add it to the training set, particularly effective for object recognition

- We are always limited by the amount of data available for generalization
- Why Images?
 - high dimensional
 - include an enormous variety of factors, many of which can be easily simulated

https://blog.keras.io/buildingpowerful-image-classificationmodels-using-very-littledata.html

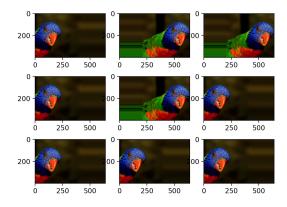
AncoraSIR.com

Dataset Augmentation

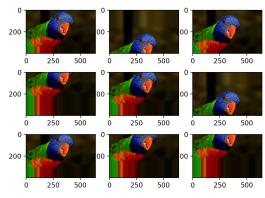
Create fake data and add it to the training set, particularly effective for object recognition

https://machinelearningmastery.com/how-to-configure-image-dataaugmentation-when-training-deep-learning-neural-networks/

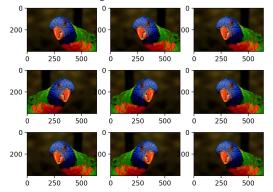
Horizontal Shift

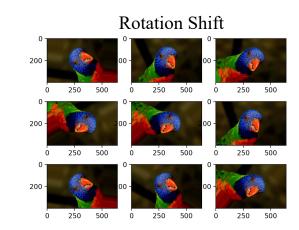


Vertical Shift

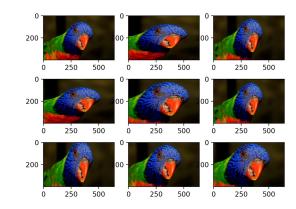


Flip with H/V Shift

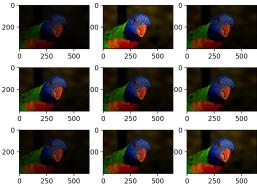




Random Zoom (Noise)



Brightness Shift (Noise)



Southern University of Science and Technology

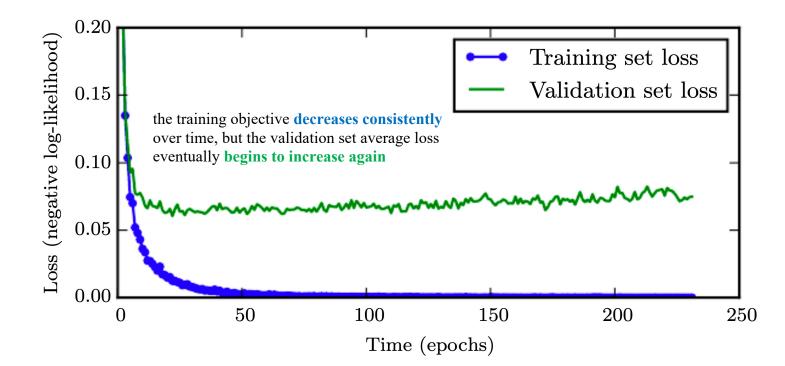
AncoraSIR.com

DES5002 Designing Robots for Social Good

Early Stopping

Due to its simplicity and effectiveness, it is probably the most commonly used form of regularization in deep learning

- We can obtain a model with better validation set error (and thus, hopefully better test set error)
- Every time the error on the validation set improves, we store a copy of the model parameters
- As a very efficient hyperparameter selection algorithm
 - The number of training steps is just another hyperparameter



Learning curves showing how the negative log-likelihood loss changes over time

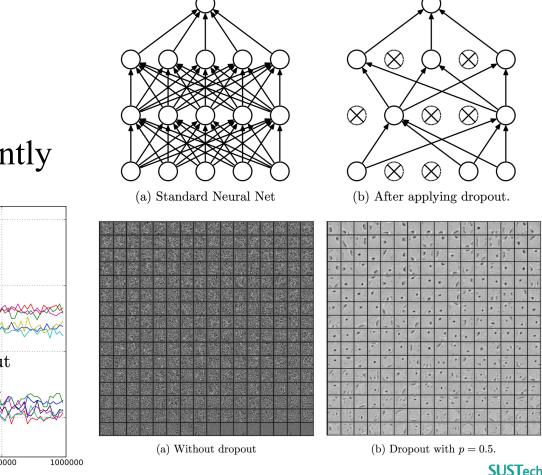
(epochs: the number of training iterations over the dataset)

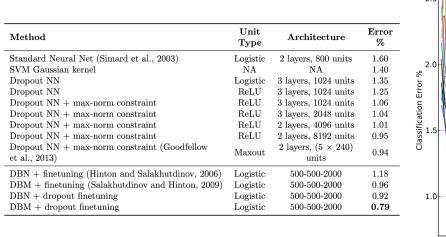
Dropout

Randomly drop units (along with their connections) from the neural network during training

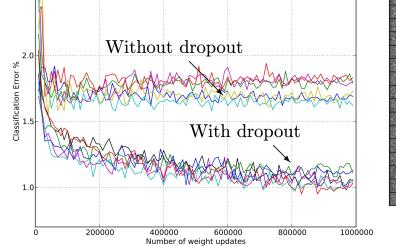
- The dropout rate
 - The fraction of the features that are zeroed out;
 - Usually set between 0.2 and 0.5.
- Dropout improves the performance of neural networks on supervised learning tasks significantly

25





http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

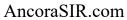


AncoraSIR.com

Wan Fang

outhern University f Science and Technolo

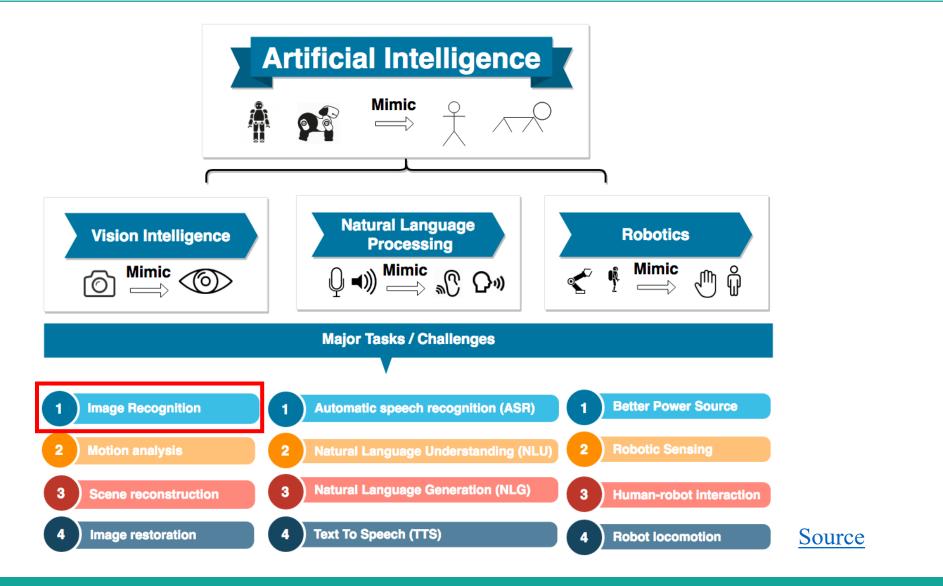
Modern Architectures



Contraction of scalar to s

DES5002 Designing Robots for Social Good

Major Application of AI



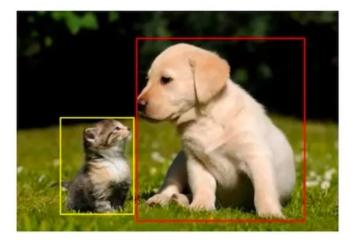
DES5002 Designing Robots for Social Good

Wan Fang

Image Recognition

Is this a dog?

What is there in image and where?



Which pixels belong to which object?

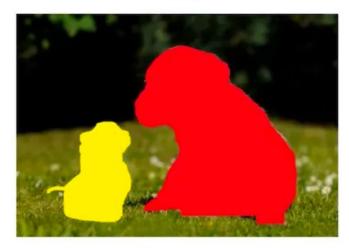


Image Classification

Object Detection

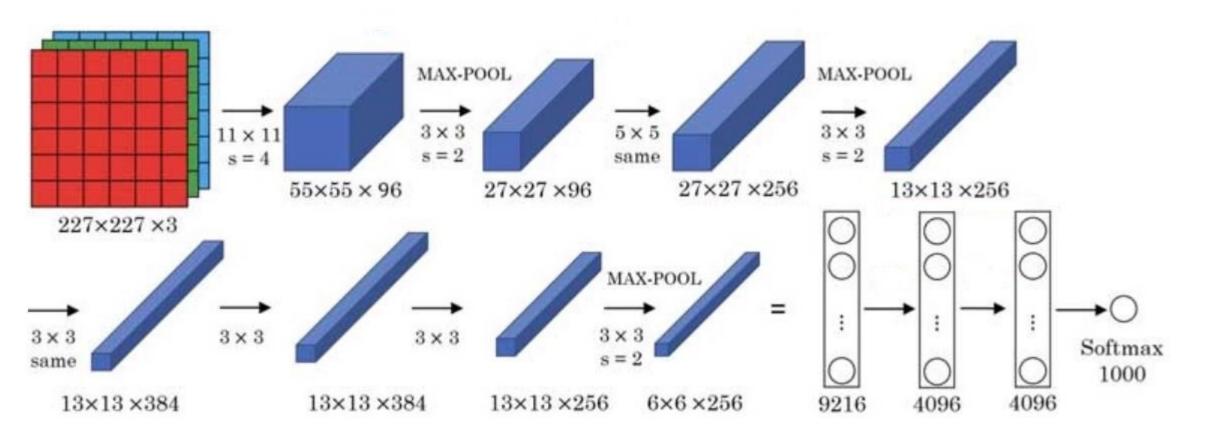
Image Segmentation

outhern University Science and Technok

Source: codebasics

AncoraSIR.com

AlexNet - Architecture



AlexNet - Application

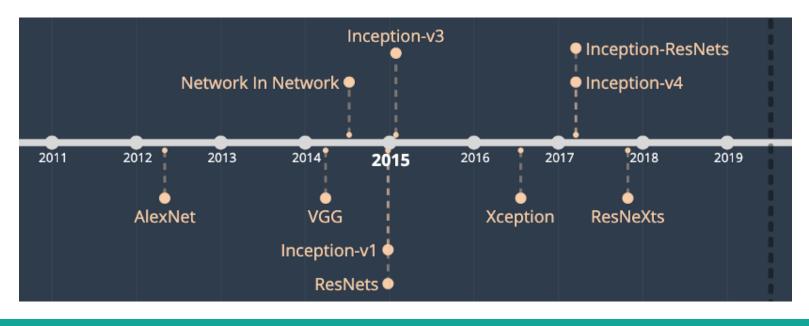
Finetune AlexNet

- Downloaded the train.zip file from
 - the <u>Kaggle Dogs vs. Cats Redux Competition</u>.

DES5002 Designing Robots for Social Good

Some Notes

- Why still Alexnet now?
 - Simple yet works quite well on many of the projects in our lab: *classify rotation angles, recognize good grasp position, recognize certain patterns to trigger robot actions*
 - No reason to switch to any of the more heavy-weight models.
 - Outperforms more complex model like VGG and Inception when the training data is small in size.



YOLO

History

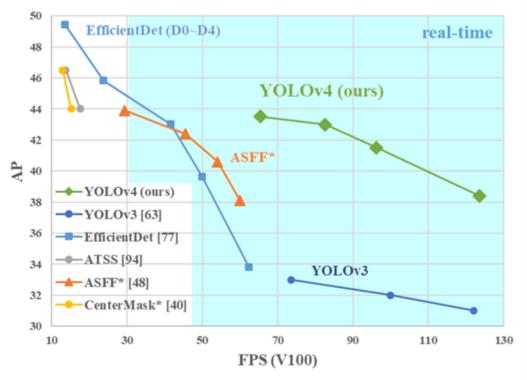
• You only look once (YOLO) is an object detection system targeted for real-time

Joe Redmon

I stopped doing CV research because I saw the impact my work was having. I loved the work but the military applications and privacy concerns eventually became impossible to ignore.twitter.com/RogerGrosse/st...

- Evolvement
 - YOLO: 2015, "<u>You Only Look Once: Unified, Real-Time</u> <u>Object Detection</u>"
 - YOLOv2: 2017, "YOLO9000: Better, Faster, Stronger"
 - YOLOv3: 2018, "YOLOv3: An Incremental Improvement"
 - YOLOv4: 2020, "<u>YOLOv4: Optimal Speed and Accuracy</u> of Object Detection"

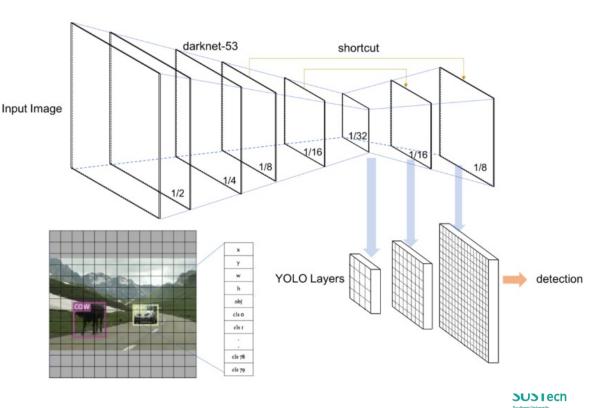
MS COCO Object Detection



Architecture of pipeline

YOLOv3

- YOLO is a fully convolutional network (FCN) only convolutional layers.
- 1. A feature extracting network: darknet-53
 - 3 \times 3 and 1 \times 1 filters with skip connections
 - final feature map has 1/32 times smaller
- 2. Upsampling network
 - 1/32, 1/16, 1/8 of the input image
- 3. YOLO layers
 - Makes detections at three different scales.
 - capable of capturing large/smaller objects



AncoraSIR.com

More Details on Architecture

 ${\color{black}\bullet}$

Backbone Network : darknet53

	Туре	Filters	Size	Output		
,	Convolutional	32	3×3	256 × 256		
	Convolutional	64	$3 \times 3 / 2$	128×128		
1×	Convolutional	32	1×1			
	Convolutional	64	3 × 3			
	Residual			128 × 128		
	Convolutional	128	3×3/2	64 × 64		
2×	Convolutional	64	1×1			
	Convolutional	128	3 × 3			
	Residual			64 × 64		
	Convolutional	256	3×3/2	32 × 32		
8×	Convolutional	128	1×1			
	Convolutional	256	3 × 3			
	Residual			32 × 32		
	Convolutional	512	3×3/2	16 × 16		
8×	Convolutional	256	1×1			
	Convolutional	512	3 × 3			
	Residual			16 × 16		
	Convolutional	1024	$3 \times 3 / 2$	8 × 8		
[Convolutional	512	1×1			
4×	Convolutional	1024	3 × 3			
	Residual			8×8		
	Avgpool		Global			
	Connected		1000			
	Softmax					
)						

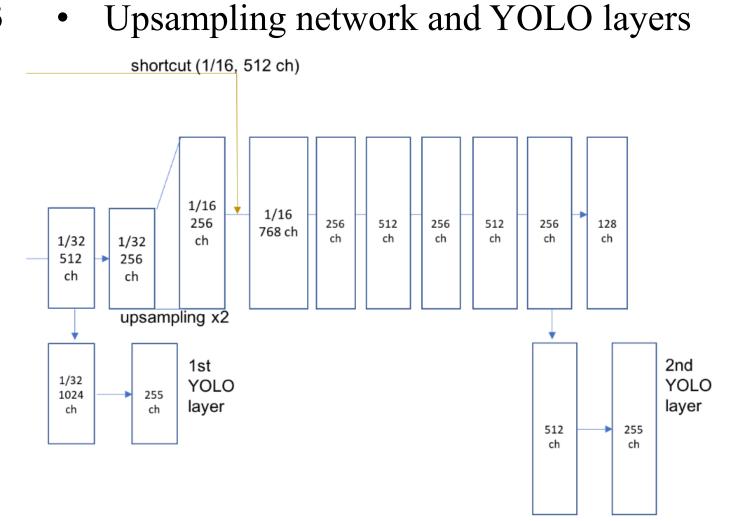


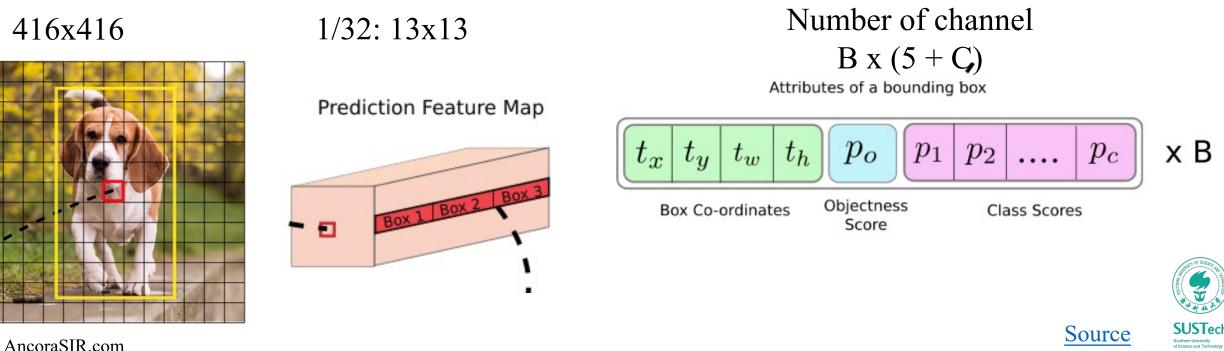
Fig. 2 Upsampling network and YOLO layers. The rectangles stand for feature maps.

Anco

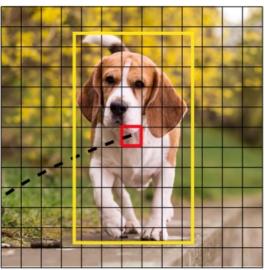
Architecture

Interpreting the Output

- YOLOv3 makes detections at three different scales
- The detection is done by applying 1 x 1 detection kernels on feature maps of three different sizes



416x416



DES5002 Designing Robots for Social Good

Choice of anchor boxes

- YOLO v3 uses 3 anchor boxes for each scale.
- With COCO 80 classes, Number of channel = B x (5 + C) = 3 x (5+80)

	anchor 1	anchor 2	anchor 3	anchor 4	anchor 5	anchor 6	anchor 7	anchor 8	anchor 9	
	x	x	x	x	x	x	x	x	x	
	у	у	у	у	у	у	у	у	у	
	w	w	w	w	w	w	w	w	w	
	h	h	h	h	h	h	h	h	h	
	obj	obj	obj	obj	obj	obj	obj	obj	obj	
85 channels⊸	cls o	cls o	cls o	cls o	cls o	cls o	cls o	cls o	cls o	
	cls 1	cls 1	cls 1	cls 1	cls 1	cls 1	cls 1	cls 1	cls 1	
			:	:				:	:	
	cls 78	cls 78	cls 78	cls 78	cls 78	cls 78	cls 78	cls 78	cls 78	
	cls 79	cls 79	cls 79	cls 79	cls 79	cls 79	cls 79	cls 79	cls 79	
	YOLO layer 1: scale 1/32				YOLO layer 2: scale 1/16			YOLO layer 3: scale 1/8		

DES5002 Designing Robots for Social Good

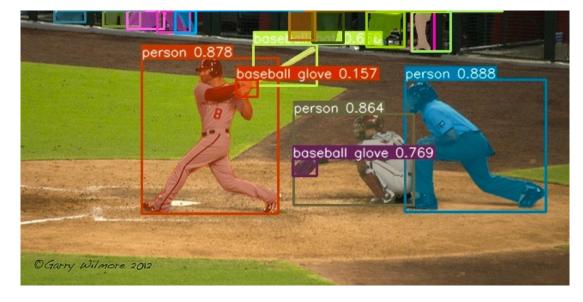
AncoraSIR.com

Summary

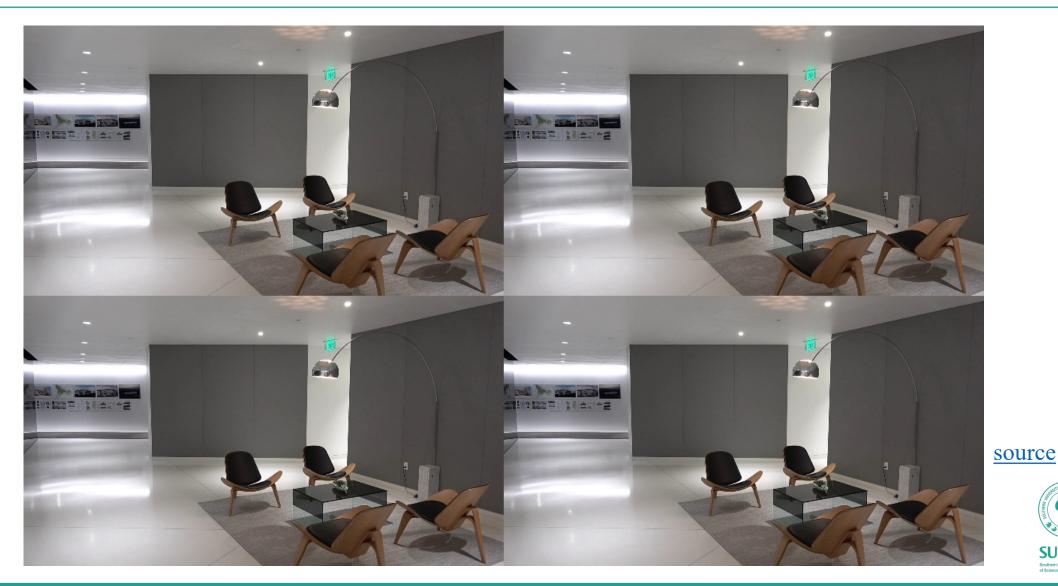
- YOLOv3 detects objects of different sizes at three YOLO layers.
- Each YOLO layer has grids of different resolution and three anchors with different shapes.
- Each anchor of one grid has the following information: box center location, box size, objectness likelihood, and class probability.
- YOLO is fast because it does not depend on regional proposal and run the neural network forward once on an image.

Resource

- YOLO v3 and v4 in C++: <u>https://github.com/AlexeyAB/darknet</u>
- YOLO is supported in Nvidia DeepStream: <u>https://news.developer.nvidia.com/deepstream-sdk-4-now-available/</u>
- YOLO v7 in Python and Pytorch: <u>https://github.com/WongKinYiu/yolov7</u>



Application: Real-time Redaction

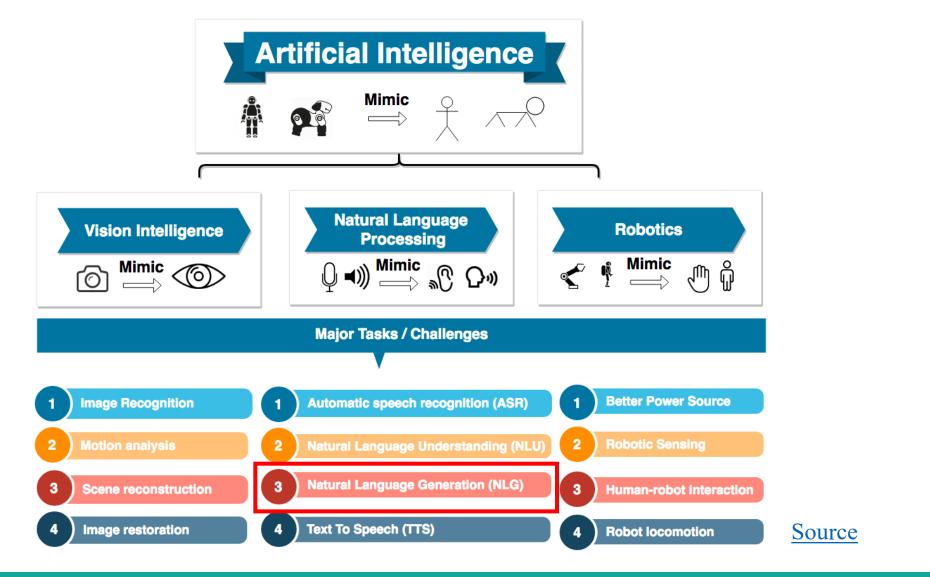


AncoraSIR.com

SUSTech

Southern University of Science and Technolog

Major Application of AI



DES5002 Designing Robots for Social Good

Wan Fang

Recurrent Neural Networks

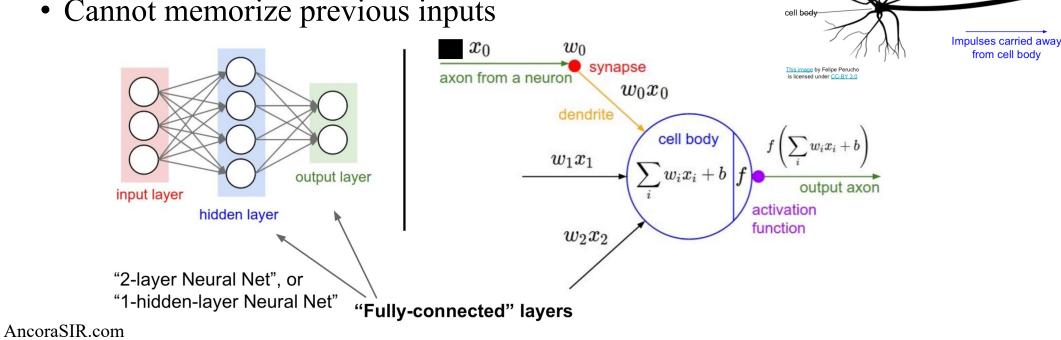
Why Recurrent Neural Networks?

Impulses carried toward cell body

dendrite

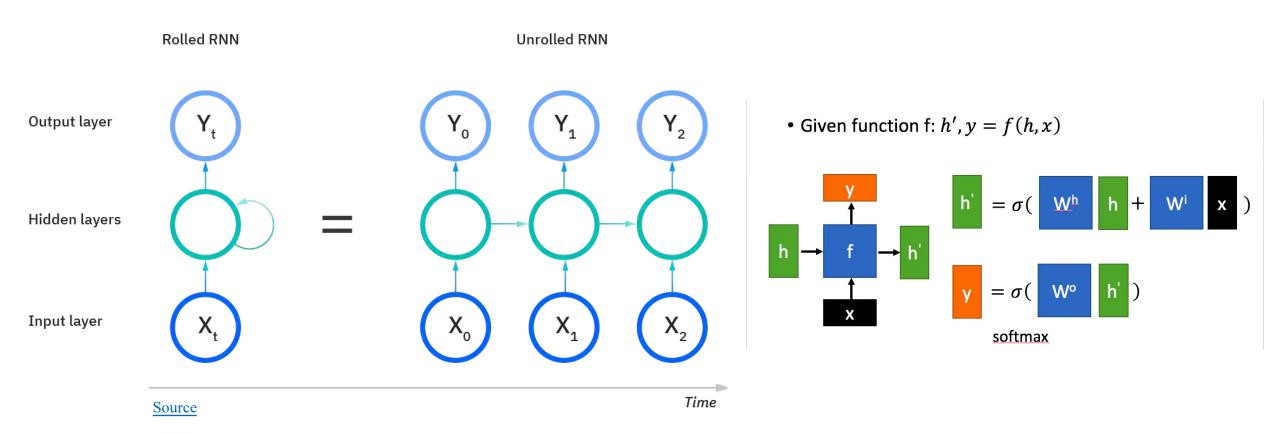
from cell body

- RNN were created because there were a few issues in the feed-forward neural network:
 - Cannot handle sequential data
 - Considers only the current input
 - Cannot memorize previous inputs



presynaptic

What Is a Recurrent Neural Network (RNN)?

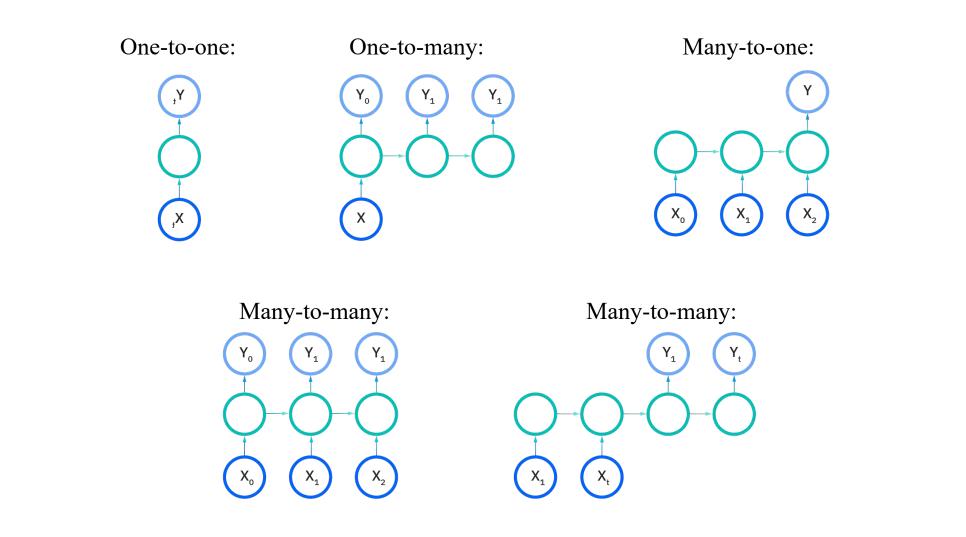


- RNN are distinguished by their "memory" as they take information from prior inputs to influence the current input and output.
- RNN share parameters across each layer of the network

AncoraSIR.com

SUSTech

Types of Recurrent Neural Network?

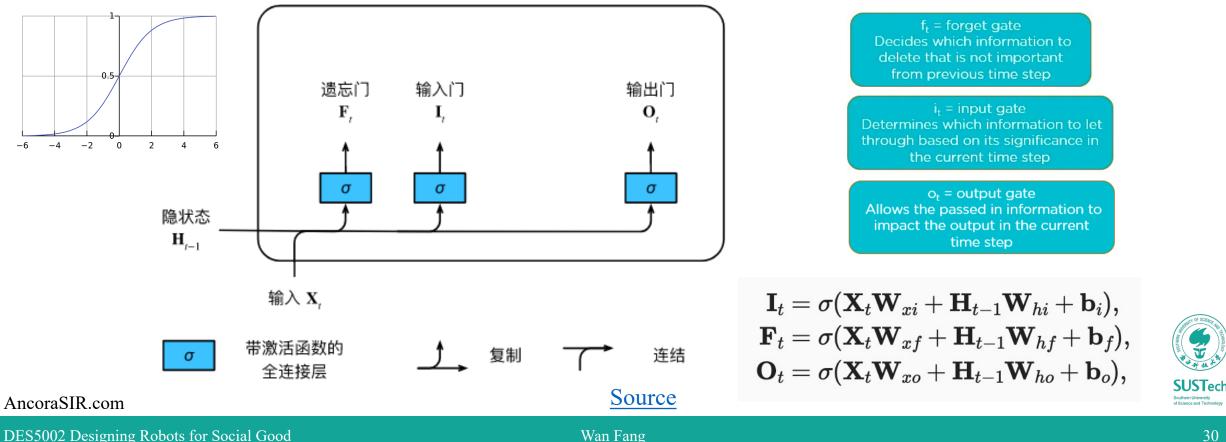


https://www.ibm.com/cloud/learn/recurrent-neural-networks

AncoraSIR.com

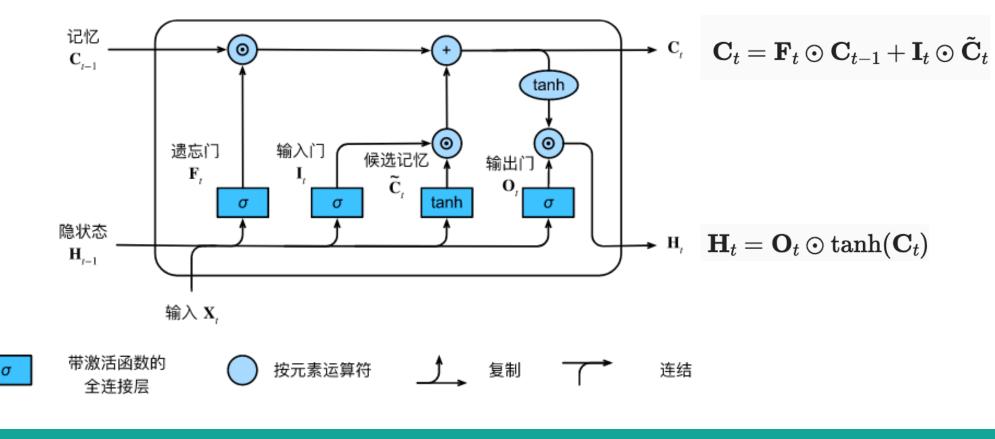
Variant RNN architectures

- Long Short-Term Memory Networks
 - LSTMs are a special kind of RNN capable of learning long-term dependencies by remembering information for long periods is the default behavior.



Variant RNN architectures

- Long Short-Term Memory Networks
 - LSTMs are a special kind of RNN capable of learning long-term dependencies by remembering information for long periods is the default behavior.



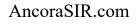
AncoraSIR.com

Wan Fang

SUSTec

Generative Adversarial Networks

- GANs can be trained on the images of
 - humans to generate realistic faces.
 - cartoon characters for generating faces of anime characters as well as Pokemon characters.

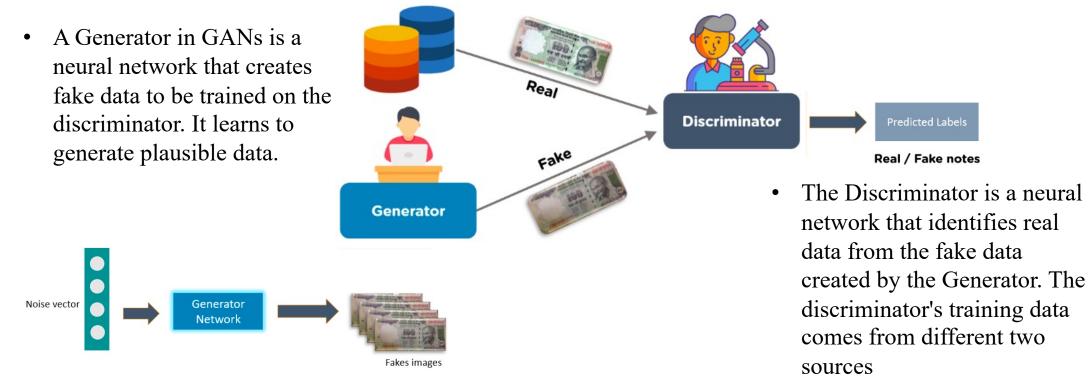


SUSTec

Text to Image

What are Generative Adversarial Networks?

- Generative Adversarial Networks (GANs) were introduced in 2014 by Ian J. Goodfellow
- GANs perform unsupervised learning tasks in machine learning.
- It consists of 2 models that automatically discover and learn the patterns in input data.

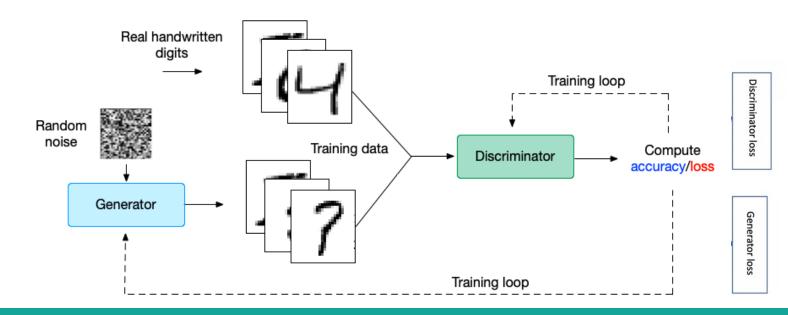


AncoraSIR.com

SUSTecl

Steps for Training GAN

- 1. Define the problem
- 2. Choose the architecture of GAN
- 3. Train discriminator on real data
- 4. Generate fake inputs for the generator
- 5. Train discriminator on fake data
- 6. Train generator with the output of the discriminator



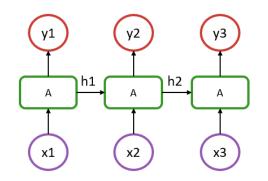
AncoraSIR.com

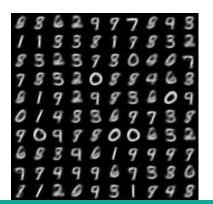
Exercise with Julia

• CNN: Handwritten digits classification

• RNN: AI Generates Shakespeare-like text

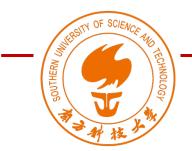
• Deep Convolutional GANs (DCGANs): Generate images from noise





Homework

- Start assembly your team's portion of Reachy and identify parts that could be redesigned with generative design.
 - 装配手册 (文字、截图、视频)
- On Tue Nov 15, each team will give a presentation of 6 mins + Q&A 4 mins
 - 1. 从个人的学习、生活经验、实习工作经验中,找到可能可以用智能机器人解决的痛点/需求。
 - 2. 探索一个或多个可能可以集成/改进到Reachy中的机器人/人工智能应用
 - 感知能力:视觉、触觉、语音?
 - 学习能力: 强化学习、模仿学习?
 - 执行能力:移动底盘、双足、软体手?



DES 5002: Designing Robots for Social Good

Autumn 2022

Thank you~

Wan Fang Southern University of Science and Technology